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Abstract

The genetic algorithm (GA) finds optimal solutions over complex fitness landscapes using a method developed in

analogy to genetic laws and natural selection. The method essentially operates by optimizing the tradeoff between

exploring new points in the search space and exploiting previous information discovered thus far. In this tradeoff,

an understanding of the internal GA dynamics, how exactly the GA arrives at an optimum solution, remains

somewhat mysterious. Harvesting strategies are introduced here to parameterize the GA's dynamical behavior of

elevating sub-threshold solutions toward optimum. The method of harvesting balances the competing aims of

population diversity counterweighted against rapid convergence toward the optimum solution. The work establishes

that: (1) an upper bound on the fitness ratio exists, above which harvesting becomes too disruptive to the

population diversity; (2) analytical conditions for considering elevation within the genetic algorithm are a specific

case of logistic growth; and (3) explicit relations exist for the maximum yield and maximum harvestable fraction for

2-stage, 3-stage and finally n-stage harvesting strategies as a function of fitness ratio. Simple expressions for GA

time complexity between harvesting steps are presented.

1. Introduction

The genetic algorithm (GA) is capable of optimizing over complex functional landscapes [1-3]. This

characteristic develops in part from its ability to consider many solutions in parallel such that continuity

and smoothness no longer become as important to solution processing as in standard hill-climbing

methods. The principal challenge, however, remains: how to understand the internal workings of the

GA. More specifically, if a step-by-step understanding is found for how genetic pressure pushes

solutions towards optimum, then various improvements and accelerations should quickly follow.

In this effort, an n-stage harvesting strategy is examined here for a genetic algorithm which promotes

most fit individuals without further cross-over or mutation. Within each harvesting stage and also within

each generational time step, the less fit individuals are allowed to cross-over. The overall product is a

time-varying elite group which is not disturbed genetically, coupled with a subthreshold populatkm

(}167-2789,'94 $07.0(I © 1994 Elsevier Science B.V. All rights reserved
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which evolves according to standard genetic laws. The entire process balances two competing aims: the

GA both encourages diversity among sub-optimal performers, while at the same time preserving the
integrity of better performers.

Within this procedure, the class of performance is set by assigning an excursion level 14] (or "water

level") which ttoats selected solutions above low-lying peaks on a complex fitness landscape. The

behavior of such a two-tiered genetic algorithm (solutions partitioned above and below an excursion

level) has been outlined elsewhere [4]; in general wc call the newer method, the excursion set mediated

genetic algorithm, or thc ESMGA (Fig. 1). It has produced improved properties for convergence on

selected test functions, both experimentally on landscapes with multiple optima and analytically as a

candidate for seeking a stronger GA version using Holland's schema theorem. A more complete

characterization is in progress.

This paper develops a general harvesting strategy for supporting the elevation of sub-threshold

solutions above the excursion level. First, the dynamics of a generational genetic algorithm arc

presented, wherein all individuals below the threshold are replaced at each generation. For this

generational GA, population dynamics are shown to follow its a specific case of logistic growth.

Harvesting is considered as a stronger force fl)r achieving rapid optimizations for the cases of 2-stage

harvesting. 3-stage harvesting and finally n-stage harvesting. Criteria for answering the important

practical questions (of when to harvest) are formulated in terms of the fitness ratio between binary

11 ,iyIn Gn fn I

I tl population
(random) Intermediatel Intermediate2

L

Operators: Tournament Cross-over Evaluate
selection and mutation

A=I /

/

t mPopulatiol
t 2 population (random)

(random)

Fig. 1. Schema showing modilicd GA model (ESMGA) and corresponding harvesting smltcgy for intergcncralional promotion.

The dashed box encloses the harvested fraction of the entire population, with cross-over and nluHllion performed on tile less-lit

members lying bclmv the excursion level. At the conclusion of a GA run, the entire remaining population (above and below

threshold) arc combined for evaluating the total yicM.
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choices. In the last section of the paper, we propose recommendations for driving the GA more

strongly using the harvesting approach.

2. Population dynamics of generational reproduction and logistic growth

Consider a genetic algorithm which replaces all individuals at each generation, the so-called

generational GA [5,6]. Its dynamic behavior contrasts markedly with a steady-state model which allows

birth and death of individuals to keep the population level constant. With generational reproduction,

the population level is not fixed and new individuals can be allowed to enter the solution space. For an

initial population, P_), which is allowed to reproduce over a time sequence, t, and which is evaluated

over a fitness landscape characterized by the fitness ratio, r = ]]/f_ > 1, then the final population, P, is

r' Pl_ AP o

P'= l+P,,(r'-l) 1 + P,,(A 1)" (l)

where A = r'.

This form ( 1 ) of the generational GA can be made to correspond to a more general logistic equation,

dP/dt = (a bP)P for the case of a = 1, b = 1, r = e- 2.732 .... where the fitness ratio is simply taken

as the exponential. One motivation for establishing this link between the generational GA and logistic

behavior is both to take advantage of (and to make contact with) the vast literature on this aspect of

biological population dynamics.

The modified ESMGA protocol (Fig. 1) can be represented within the generational model of the

standard GA by the following pseudo-code:

procedure ESMGA

begin

t = 0;

initialize n(t);

evaluate structures in n(t) and identify fitnesses

greater than the excursion level, n,(t);
while termination condition not satisfied

(convergence parameter A < 1) do

begin

t=t+ 1;

select n(t) from n(t- 1) using excursion set
mediation and tournament solution;

modify structures in n(t)-n_(t) by applying genetic operators;

evaluate structures in n(t)

end

end.

The thrust of the modified code is to set aside a time-varying elite population (defined for each

generation as those members with titnesses evaluated above the excursion level) and not mix these high

performers with lower-scoring members (Fig. t). Most notably this formalism has been shown to
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provide a basis for insuring a stronger form [4] of Holland's schema theorem, in which individuals

converge towards the optima with an exponential approach. Simulations and demonstrated efficacy of

the ESMGA appear most explicitly in Ref. [4]. A natural corollary to this notion of excursion levels is

harvesting. In the following sections, we adopt various strategies [7,8] for harvesting high-fitness GA

solutions and evaluate their characteristic population dynamics using Eq. ( 1 ). Harvesting can in turn bc

considered a kind of promotion for lower-fitness solutions; at the completion of a GA run, the entire

population is promoted (or culled) and a maximum obtainable fraction of the initial population is

evaluated.

3. Harvesting in 2 stages: when to harvest

As an initial approach to achieving improved promotion dynamics of subthreshold solutions, we

examine a 2-stage harvest. The harvesting sequence is shown schematically in Fig. 2a. Let the initial

population commence (below the excursion level, e) with Pu at time tu and subsequently grow through

generational reproduction (through point-mutation, cross-over and selection) to an intermediate

population, Pt at time t_. From this intermediate population, we will harvest or cull a fraction k

(0<k < 1) of Pt, so that the new initial population for the second stage is (1 k)Pt. For this two-stage

harvest, the total yield of solutions, lI, promoted above the excursion level, can be written as the sum

of two terms, the first corresponding to standard generational growth within the GA. The second term

corresponds to a modified growth which depends on three factors: the fitness ratio, the number of

generations allowed until harvesting and the initial population.

We imagine the 2-step growth cycle as pictured (Fig. 2a), with k parameterizing the harvest fraction.

Harvesting schematics

1

P "'''''_ kPo j(l-k)l_ =[l-k(l-k)]P- -- --

O -......._ 1_ =(l-k)P" -- ...........

Harvest (excursion) level

k(l-k)P o .... --

(a) - - -_-o

P3 Final

Harvesting

P2 Second Harvesting

1-K1)P_

-generations

P1 First Harvesting

__...1. ..1. ..1. ..1.

Populalion, Po

Fig. 2. Population dynamics within 2-stage (a) and 3-slagc (b) harvesling models.
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We ask the question: what harvest fraction gives the maximum number of solutions promoted above the

excursion level? Algebraically, the problem is to maximize P as the k value that gives iJll/#k = 0. First

we solve for the harvested population 11:

(1 --kl)Pia

il = k, P, + P, = k, P, + I _ (1 -- k, )(,_ - I)e, ' (2)

where the second equality follows from Eq. (1) written as P, = P_.

In terms of the fitness ratio and generation time (written as A = r'), the harvest fraction which

maximizes promotion above the excursion level is

1 1

k=l (A _ __+ l)pz = l - (r, a + l)p. (3)

The optimal harvest fraction k is shown graphically in Fig. 3. Clearly, the depth into the subthreshold

population that the harvest can be culled depends on the fitness ratio, r, the number of generations until

harvest, t, and initial population size. P.. Harvest depth increases for high fitness ratios, r >> 1, for long

generation times, t (t >> 1) and for large initial population sizes, P..

When (3) is substituted back into (2) for II, ...... then

(r'"-' - I)

11...... = P_ + (r ' _ + 1) (4)

Fig. 4 shows the maximum promotable fraction of the population that can be achieved within a

2-harvest arrangement.

A deeper level of understanding can be gained about harvest dynamics from consideration of Eq. (3)

for the harvest fraction, k. In particular, since harvest benefits the overall yield only for the condition

0 < k < 1, a minimum condition on the fitness ratio can select problems which most probably would

benefit from culling. In this spirit, we ask the question for a 2-harvest cycle: when does harvesting

benefit the GA approach to superthreshold values?

To answer this question, we propose k >0 as the evaluation and solve for fitness ratio in terms of

generation time and population size. P_. From Eq. (3), k > 0 defines a critical fitness ratio, r_,,_ which

limits those problems which harvesting benefits to fitness ratios greater than

Harvest fraction k Logistic growth

Fitness 20

ratio, r 1 1 10 Generations to harvest, t

30
40

Fig. 3. 2-stage harveslable traction, k, as a function of generation lime and the fitness ratio, r.
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Maximum
Generations to harvest

1

2

i{_;I ._ii_¸ I_il

N

1.1 1.5

I

2.0 2,5

Fitness ratio, r

_1_ 'racti¢

0.2

0.02

Logistic growth

Fig. 4. Maximum yield shown as a function of generation time and the Illness ratio, r.

137

r>r_m=(l + 1/Po) :_'. (5)

The harvest fraction is a monotonically increasing function of the fitness ratio; higher titness ratios will

naturally lead to a deeper fraction of culling. For the minimum condition (5) therefore, the minimum

fitness ratio is r,,, below which harvesting itself cannot profit the simulation. Thus for problems with

low fitness ratios, harvesting is advisable only for short generation times (t small) or for few strings (P.

small). Conversely, one should not harvest a GA population prematurely if r < r.,_,. In some sense, this

result captures the essential dilemma of GA dynamics: how to span a large population space (maintain

genetic diversity) while at the same time converging onto an optimal solution. Harvesting offers one

bridge towards understanding more deeply this tradeoff.

To conclude this analysis, we demonstrate the independence of the last harvest cycle from initial

conditions on population size. Dynamically, this can be seen as a final catch of all individuals which

depends only on the fitness ratio, r and the generation time, t. Combining Eqs. (3) and (4), and solving

for P_, then

a, 2 r _:

P_= (A '2+ I)- (r '2+ l) (6)

To summarize this section, a two-stage harvest can be seen to: (1) establish harvest criteria (in what

types of fitness landscapes is harvesting favored); (2) link the generational GA dynamics to the

well-developed study of logistic growth for the special case of unit growth rates for birth (a = I) and

death (b = l) and a particular fitness ratio, r = e = 2.732. In other words, on high fitness landscapes,

logistic growth can well describe generational GA. This latter identification opens up a more complete

contact between GA dynamics and classical models for biological growth. In addition, the 2-stage

model is simple enough to yield analytical solutions (4), (5) for the maximum promotable population in

a subthreshold community, II ......, as well as giving the particular optimum harvest fraction, k. which

achieves this strong pressure.
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4. Harvesting in 3 stages: in what proportion to harvest

The 3-stage harvesting sequence is shown schematically in Fig. 2b. Let the initial population

commence (below the excursion level, e) with Po at time t_ and subsequently grow through generational

reproduction to an intermediate population, P_ at time t l. From this intermediate population, we will

again harvest or cull a fraction k t (0<k, < 1) of P,, so that the new initial population for the second

stage is (1 - k _)Pl. The cycle of generational growth and subsequent harvest is repeated for a second

(independent) harvest fraction, k,. For this three-stage harvest, the total yield of solutions, P,

promoted above the excursion level, can be written as the sum of three terms, the first corresponding to

standard generational growth within the GA, the second and third again corresponding to a modified

growth dependent on the fitness ratio, generations allowed until harvesting and the initial population.

In the three-stage process, we pay particular attention to the mixture of possible scenarios based on

different harvest fractions. The simple cases of an increasingly deep cut, a constant cut, and a

decreasing cut from the subthreshold population will be treated; thc increasing cut will be discussed for

its relevance towards driving the subthreshold population to extinction, namely to arrive at a total

promotion rate above the excursion level.

We imagine the 3-step growth cycle as pictured (Fig. 2a), with the set (k j, kz) parameterizing the

harvest fractions taken from 2 intermediate populations. We again ask the question, what harvest

fraction gives the maximum number of solutions promoted above the excursion level? Algebraically,

the problem is to maximize II as the k value that gives OIl/Ok_ -all�Ok, = 0. First we solve for the

harvested population H:

11 = k,P_ + P3 + k2P2 = k,Pl + q_(k,, k2) +,8(k,, k2), (7)

where the last two terms in Eq. (7) can be written for P, = P_ as

k_A

qo(k"k2):k_P'- I+P,(1 ---k,)(A-1)(l-k,)P 1 (8a)

and

A

fl(k,, kz) : P3 : 1 + P2(l - k:)(A- 1) (1 - k2)P z

_ A-_(l -/,,)(1 - k__)P, (86)
1 + (A - 1)(1 k,)P_ + P,A(A - 1)(1 - k_)(l - k:) "

In terms of the fitness ratio and gcneration time (written as A = r'), then the harvest fractions, (k_, k2),

which maximize promotion abovc the excursion level are:

1 1 1

k,=l (A ''2+ 1)P_- 1 (r 'e+ 1)P, k 2=1 r ....2. (9,10)

The optimal harvest fractions k, are shown graphically in Fig. 5. While the optimum harvest fraction

from the first cycle (Eq. 9) is the same symbolically as for the 2-stage problem (4), the numerical value

is diminished since the total generation time T= t/3, instead of T = t/2. Clearly, the depth into the

subthreshold population that the harvest can be culled depends on the fitness ratio, r, and the number

of generations until harvest, t, but the second harvest fraction does not depend on the initial population

size, P,,. As was the case previously, harvest depth increases for high fitness ratios, r >> 1, for long
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Fraction of original population promoted

;eneration

1.1

/;!/
. . , t, ,,J¢ ,_ • ? • i i i

///11[I I / / I

2.0

Fitness ratio, r

\ X , x
.t .\.\. x t \

\\\""

Fig. 5. 3-stage harvestable fraction, k, as a function of generation time and the fitness ratio, r.

generation times, t, and for large initial population sizes, P.. In general the second harvestable fraction,

k 2 is less than or equal to k_ and increases steeply as harvest time is delayed until later generations.

When (9,10) are substituted back into (8) for II, ..... then

(/2 _ 1)

II ...... = Pi + (/2+ 1)2>II ...... (2-stageharvest). (11)

Eq. (11) shows the maximum promotable fraction of the population that can be achieved within a

3-harvest arrangement compared to a 2-stage harvest.

Further understanding can be gained about harvest dynamics from consideration of Eqs. (9, 10) for

the dual harvest fractkms, k;. In particular, since 3-stage harvesting benefits the overall yield only for

the condition when both fractions 0 < k; < 1 then an additional minimum condition on the fitness ratio

(10) can select problems which most probably would benefit from 3-staged compared to 2-staged

culling. In this spirit, we ask the question for a 3-harvest cycle: how much harvesting benefits the GA's

approach to super-threshold values'?

To answer this question, we propose both k_ > 0 as the evaluation and solve for fitness ratio in terms

of generation time and population size, P0- From Eq. (8)-(10), k 1,2> 0 defines a critical fitness ratio,

r_r., which limits those problems which harvesting benefits to fitness ratios greater than

lr>r_it= 1+_7./ , r>r_i,=l, (12)

where the second inequality follows for all fitness ratios (by definition of the rank ordering of binary

fitnesses, r=f_/f.> l). As before (5) for problems with low fitness ratios, Eq. (12) indicates that

harvesting is advisable only for short generation times (t small) or for few strings (P0 small).

Conversely, one should not harvest a GA population prematurely if r < r_,.

To summarize this section, a three-stage harvest can be seen to: (1) establish additional harvest

criteria (in what fitness landscape is harvesting beneficial); (2) introduce three possible scenarios (Fig.

6) for the harvesting envelope and its effect on population diversity. The three scenarios include

increasingly deep harvesting fractions (strong pressure, k t < k2), constant harvesting fractions (constant

pressure, kl=k2), and decreasingly deep harvesting fractions (light pressure, kt>k2). For an
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Fig. 6. Case studies of scenarios for depth of harvesting fraction (light vs. heavy pressure for a culled fraction).

increasingly deep harvesting fraction, the extinction or depletion of the sub-threshold population is

possible. In short, this case corresponds to depleting the diversity, such that not enough sub-threshold

reproduction takes place. (In practice, for very few strings, the assumptions required for treating the

population growth as a differential break down.) In an important sense, the case of decreasingly deep

harvesting fractions corresponds schematically to the previous description of ESMGA. In other work,

the case of constant harvesting, P,_ _/P, = 1, has been generalized to include linear harvesting profiles,

P,+ _/P, = constant. Several interesting analytical results can be derived in closed form for such linear

harvesting pressure.

Finally, as was the case for 2 stages, the 3-stage model remains simple enough to yield analytical

solutions for the maximum promotable population in a subthreshold community, P ...... as well as giving

the particular optimum harvest fractions, k_, which achieves this strong pressure.

5. Harvesting in n stages: how to harvest continuously

The n-stage harvesting cycle, or how to harvest continuously from sub-threshold populations, is a

straightforward extension of the 3-stage results. The optimal harvesting fractions k, follow from the

same condition on the maximum yield, 11..... (011�Ok, = 0):

i 1

(r'"2 !-l)p1kt=l (AI.,2 + l)pt - 1 13)

1
k_ = 1 .....2 - k3 .... k,, . 14)

r

The n-stage generalization of the later harvesting populations similarly follows as an extension of I 1)
as

' t 2A t'2 r

P2 (A,..2+l) (r,.2+l)-P_ "'" P,,. 15)

Finally the maximum yield is

(r ''_-- 1)

ll .... =P_ + (r,,2 + l) (n- 1)>11 ..... (limitoffewerthannstages). 16)

Eq. (16) can be interpreted as the ntaximum promotion of subthreshold individuals under continuous

harvesting. An important result familiar from logistic growth is the limit of maximum promotion under
the ESMGA as
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P ...... - P_ + T for n(large) >> 1 , (17)

where T is the total number of generations divided into equal harvest lifetimes, T = nt. This last result

gives an upper-bound estimate for the ESMGA's promotion capability (how much lift can be given to

sub-threshold populations). Its fundamental significance derives from its analytical simplicity and

dependence only on the GA's assignable or free initial conditions, P0, T. Both the initial population

size, P,_, and the total number of generations, T, can typically be fine-tuned at the outset by the

operator, such that the harvesting scenario can suitably be predicted prior to a given GA run. For the

n-stage limit, this last finding (17) represents the primary result of this section.

The n-stage harvesting limit was tested experimentally using the ESMGA. Two simulations are

included and analyzed on a badly scaled function and a roughly peaked Riccati polynomial. Results are

tabulated for harvest fractions in a T = 15-stage harvesting season. The total number of generations

(T = 15) is divided into five equal cycles (n = 5) of three generations each (t = 3). Rapid convergence

onto the global optima is reported in Fig. 7.

it is important to note that, although the analytical forms (13)-(16) are similar for the 2-, 3- and

n-stage harvests, the actual numerical convergence behavior will differ dramatically. Notably a different

time interval, nt, is considered in each case and because the generation time appears in the exponential,

A = r', then the individual population dynamics will vary significantly between different harvest

scenarios. Further it is good to emphasize that the yield from one harvest cycle to the next need not

necessarily increase, P,, > P,, _, since in general stronger or lighter pressure can be applied freely

between cycles within any given harvesting method.

6. Generalized GA dynamics

6.1. Generational vs. steady-state reproduction within the ESMGA

An appealing feature of introducing threshold levels into the GA is a renewed capacity to span the

two principal types of reproductive strategies. For example, the ESMGA combines somewhat

contrasting techniques of generational and steady-state reproduction into a single simulation. For the

most fit population, the reproduction is closest to steady state. During GA evolution, the proportional

change in population approaches a constant. This effect corresponds to light pressure on superior

performers. For sub-threshold populations, on the other hand, the dynamics most strongly follows a

generational model. The population number changes much more dramatically, a case which corre-

sponds to stronger pressure on sub-threshold populations. Thus by pressuring less fit individuals, overall

performance is optimized while at the same time conserving more fit levels. The conservation strategy

in particular maintains population strength without excessive disruption. The ESMGA can now be

considered a composite model which captures the best features of generational and steady-state

reproduction into one algorithm.

6.2. Time complexity within harvesting steps

The time complexity of a GA refers to the functional dependence of convergence time on the

population size and fitness [9,10]. Two cases of time complexity can be considered: worst and average

limits. The worst case complexity corresponds to the conditions (Pr = 1 - (1/n); P_,- l /n) where l /n is
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Fig. 7. Test functions and ESMGA performance. Results shown for a badly scaled function (0.01x + sin(1/x)) and the Ricatti

polynomial { 10, x}. Upper two windows show the function landscape; middle two windows compare fitness curves evaluated for

normal GA and ESMGA operation. The ESMGA is run with live excursion ("water") levels normalized between 0 and 20 as

e = {4.5, 7.5, 10.5, 13.5. 16.5}. The bottom two windows show the evolution of the harvest fraction for both functions over time.

some small number equal to the proportional representation of a fit individual in a general population

either initially P0 or later (near convergence) at the end of a harvcsting step, Pe. For the average case

complexity, on the other hand, the fit individual in a binary scheme is initially represented with

probability Po = 0.5 (and not equal to 1/n). Analytically, these worst and average cases for convergence

can be found for the pre-harvest population as Pt = Pf = 1 - (1/n), P. = 1/n substituted into (4) and
solved explicitly for generation time t as

In(n - 1)
tc In r (average) , (18)
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21n(n--l) (worst) (19)
t_ -- In r

for the first harvest stage. For all subsequent n-stages the time complexity is the same for both worst

and average cases:

2 ln[(2n 1)/hi (average and worst). (2(I)
t_ = In r

Result (2(}) for n-stage harvesting is particularly noteworthy, since for a large number of harvesting

steps (n >> 1), the time complexity becomes independent of the population size, n. In this way,

subsequent stages of harvest differ in their time complexity compared to thc first prc-harvest stage

(18), (19).

6.3. Harvesting recommendations

One advantage of the staged harvesting approach is how each stage contributes an additional layer to

possible GA scenarios. For example, given a 2-stage harvesting cycle, an amdytical criterion (5) exists

for finding promising fitness landscapes (or ratios) which might benefit from harvesting, the so-called

harvesting criterion. For 3-stage harvesting, the concept of an extinction solution appears, such that

increasingly deeper harvesting fractions deplete sub-threshold solutions. Finally for n-stage harvesting,

the continuous limit gives a maximum yield of superior performers which does not depend on the shape

of the fitness landscape (as measured by the fitness ratio) at all. Rather for n stages, there exists a

fitness-free solution (17). in this last case, initial parameters of population size and generation times

alone establish the yield on any arbitrary landscape. Thus the continuous harvesting limit can improve

yields over landscapes with any steepness of fitness values.

6.4. Towards an ESMGA Philosophy

The power of the ESMGA derives from its balanced dynamics which combinc features of both

generational and steady-state reproduction. For sub-fit populations, generational dynamics dominate

since the population size varies considerably (owing to continuous promotion from a limited and

diminishing pool), and also since all individuals are replaced and crossed over at each generational time

step. For super-fit populations, on the other hand, the converse dynamics of steady state dominates,

since convergence must necessarily decrease the relative importance of freshly inputted solutions. In the

limit, the population dynamics above excursion level should approximate steady state. The success of

excursion sets therefore derives from its flexible dynamics which fuse alternative reproductive

strategies.

The question of how to set the excursion level is fundamental. If this threshold is taken to describe a

water level which submerges sub-fit solutions on rugged (fitness) landscapes, then the ESMGA

dynamics become more clear. In particular, the ESMGA must work by identifying, then clustering,

these local maxima which jut out above the water level. Only following this initial clustering does global

selection begin as a more limited search.

We propose several research problems for future work. Clearly within ESMGA formalism, some

notion of an adaptive time step should be implemented. Standard forms would slowly shrink the time

step as convergence approaches. Higher resolution of closely matched optima could then emerge in the
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limit of no promotion and a global solution. A priority task therefore should identify functions with

special suitability for ESMGA solution. An example might present various ill-behaved functions (fractal

landscapes, discontinuities of differing severity, time varying functions, etc.) and quantify the functional

complexity which confounds the ESMGA search. In this field of deceptive GA functions, the ESMGA

may provide the necessary genetic pressure for confidently searching and selecting.

7. Concluding remarks

In summary, a harvesting strategy adapted to examine GA dynamics can

(1) transparently connect the generational GA to standard logistic growth models;

(2) establish analytical criteria for answering the practical question of when to harvest and what

fitness landscapes are likely to benefit from harvesting;

(3) identify the maximum harvestable population (for promotion above some fitness threshold);

(4) solve for the fraction of subthreshold individuals for whom promotion proves beneficial.

An additional outcome from the harvesting framework is proof that the last harvesting cycle does not

depend on the initial conditions except through the fitness ratio itself. Future work will introduce the

number of harvesting stages as a variable parameter which can be adjusted to pressure the best

individual's fitness continuously. Taking advantage of this cycle of initial relaxation, followed by

additional pressure, preliminary experiments performed on sample functions have shown rapid

convergence to near global optima. The ongoing work should bear on convergence properties of any

GA, in that the approach to optimum involves harvesting strategies in standard versions of elite

selection, niche formation or sharing functions. Selection itself, the central component of GA

operation, should operate analytically as a kind of harvesting, not only if successively applied across

generations, but more importantly as it appears between generations of any genetic algorithm dynamic.

The final aim is to push GA dynamics to its performance limit, while establishing a workable framework

for understanding its internal methods for arriving at that optimum performance through harvesting.
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